Survival Data Mining: A Programming Approach

Course code: BMCE42

This advanced course discusses predictive hazard modeling for customer history data. Designed for data analysts, the course uses SAS/STAT software to illustrate various survival data mining methods and their practical implementation.

Note: Formerly titled Survival Data Mining: Predictive Hazard Modeling for Customer History Data, this course now includes hands-on exercises so that you can practice the techniques that you learn. Other additions include a chapter on recurrent events, new features in SAS/STAT software, and an expanded section that compares discrete time approach versus the continuous time models such as Cox Proportional Hazards models and fully parametric models such as Weibull.

1 080 EUR

1 307 EUR including VAT

Selection of dates
onas
Do you have a question?
+420 731 175 867 edu@edutrainings.cz

Professional
and certified lecturers

Internationally
recognized certifications

Wide range of technical
and soft skills courses

Great customer
service

Making courses
exactly to measure your needs

Course dates

Starting date: Upon request

Type: Virtual

Course duration: 14 hours

Language: en

Price without VAT: 1 080 EUR

Register

Starting
date
Place
Type Course
duration
Language Price without VAT
Upon request Virtual 14 hours en 1 080 EUR Register
G Guaranteed course

Didn't find a suitable date?

Write to us about listing an alternative tailor-made date.

Contact

Target group

Predictive modelers, data analysts, statisticians, econometricians, model validators, and data scientists

Course structure

Survival Data Mining

  • introduction to survival data mining
  • elements of survival analysis
  • time-dependent covariates

Survival Models (Self-Study)

  • semi-parametric survival models
  • parametric survival models
  • discrete-time survival models

Flexible Hazard Modeling

  • building discrete time hazard models
  • grouped expanded data

Hazard Modeling with Big Data

  • outcome-dependent sampling
  • data truncation
  • piecewise constant hazards (self-study)

Predictive Performance

  • predictive scoring
  • empirical validation

Recurrent Events

  • introduction to recurrent events

Prerequisites

Before attending this course, you should
  • have a basic understanding of survival analysis
  • have experience with predictive modeling, particularly with logistic regression
  • be familiar with statistical concepts such as random variables, probability distributions, and parameter estimation
  • be familiar with SQL (including topics such as sub-queries and left-joining)
  • have SAS programming proficiency.
  • Do you need advice or a tailor-made course?

    onas

    product support

    ComGate payment gateway MasterCard Logo Visa logo